Solution of tetrahedron equation and cluster algebras
نویسندگان
چکیده
We notice a remarkable connection between Bazhanov-Sergeev solution of Zamolodchikov tetrahedron equation and certain well-known cluster algebra expression. The transformation is then identified with sequence four mutations. As an application the new formalism we show how to construct integrable system spectral curve arbitrary symmetric Newton polygon. Finally, embed this into double Bruhat cell Poisson-Lie group, triangular decomposition can be used extend our approach general non-symmetric polygons, prove Lemma, which classifies conjugacy classes in affine Weyl groups $A$-type by polygons.
منابع مشابه
CLUSTER ALGEBRAS AND CLUSTER CATEGORIES
These are notes from introductory survey lectures given at the Institute for Studies in Theoretical Physics and Mathematics (IPM), Teheran, in 2008 and 2010. We present the definition and the fundamental properties of Fomin-Zelevinsky’s cluster algebras. Then, we introduce quiver representations and show how they can be used to construct cluster variables, which are the canonical generator...
متن کاملcluster algebras and cluster categories
these are notes from introductory survey lectures given at the institute for studies in theoretical physics and mathematics (ipm), teheran, in 2008 and 2010. we present the definition and the fundamental properties of fomin-zelevinsky’s cluster algebras. then, we introduce quiver representations and show how they can be used to construct cluster variables, which are the canonical generators of ...
متن کاملexistence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولZamolodchikov’s Tetrahedron Equation and Hidden Structure of Quantum Groups
The tetrahedron equation is a three-dimensional generalization of the Yang-Baxter equation. Its solutions define integrable three-dimensional lattice models of statistical mechanics and quantum field theory. Their integrability is not related to the size of the lattice, therefore the same solution of the tetrahedron equation defines different integrable models for different finite periodic cubi...
متن کاملElliptic solution for modified tetrahedron equations
As is known, tetrahedron equations lead to the commuting family of transfer-matrices and provide the integrability of corresponding three-dimensional lattice models. We present the modified version of these equations which give the commuting family of more complicated two-layer transfer-matrices. In the static limit we have succeeded in constructing the solution of these equations in terms of e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of High Energy Physics
سال: 2021
ISSN: ['1127-2236', '1126-6708', '1029-8479']
DOI: https://doi.org/10.1007/jhep05(2021)103